9.6: Introduction to Complex Numbers and Complex Solutions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    18387
    • 9.6: Introduction to Complex Numbers and Complex Solutions (1)
    • Anonymous
    • LibreTexts

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives

    • Perform operations with complex numbers.
    • Solve quadratic equations with complex solutions.

    Introduction to Complex Numbers

    Up to this point, the square root of a negative number has been left undefined. For example, we know that \(\sqrt{−9}\) is not a real a number.

    \(\sqrt{-9}=\color{Cerulean}{?} \quad \color{black}{\text { or} } \quad(\color{Cerulean}{?}\color{black}{)}^{2}=-9\)

    There is no real number that when squared results in a negative number. We begin the resolution of this issue by defining the imaginary unit, i, as the square root of −1.

    \[i=\sqrt{-1} \quad \text { and } \quad i^{2}=-1\]

    To express a square root of a negative number in terms of the imaginary unit i, we use the following property, where a represents any nonnegative real number:

    With this we can write

    If \(\sqrt{-9}=3i\), then we would expect that 3i squared equals: -9:

    Therefore, the square root of any negative real number can be written in terms of the imaginary unit. Such numbers are often called imaginary numbers.

    Example \(\PageIndex{1}\)

    Rewrite in terms of the imaginary unit i.

    1. \(\sqrt{-4}\)
    2. \(\sqrt{-5}\)
    3. \(\sqrt{-8}\)

    Solution:

    a. \(\sqrt{-4}=\sqrt{-1\cdot 4} = \sqrt{-1}\cdot\sqrt{4}=i\cdot 2 = 2i\)

    b. \(\sqrt{-5}=\sqrt{-1\cdot 5} = \sqrt{-1}\cdot\sqrt{5}=i\cdot\sqrt{5} = i\sqrt{5}\)

    c. \(\sqrt{-8}=\sqrt{-1\cdot 4\cdot 2} = \sqrt{-1}\cdot\sqrt{4}\sqrt{2} = i\cdot 2\cdot \sqrt{2} = 2i\sqrt{2}\)

    Note

    When an imaginary number involves a radical, place i in front of the radical. Consider the following:

    \(2i\sqrt{2} = 2\sqrt{2}i\)

    Since multiplication is commutative, these numbers are equivalent. However, in the form \(2\sqrt{2}i\), the imaginary unit i is often misinterpreted to be part of the radicand. To avoid this confusion, it is a best practice to place the i in front of the radical and use \(2i\sqrt{2}\).

    A complex number is any number of the form

    \[a+bi\]

    where a and b are real numbers. Here a is called the real part and b is called the imaginary part. For example, \(3−4i\) is a complex number with a real part, 3, and an imaginary part, −4. It is important to note that any real number is also a complex number. For example, the real number 5 is also a complex number because it can be written as \(5+0i\) with a real part of 5 and an imaginary part of 0. Hence the set of real numbers, denoted R, is a subset of the set of complex numbers, denoted C.

    Adding and subtracting complex numbers is similar to adding and subtracting like terms. Add or subtract the real parts and then the imaginary parts.

    To subtract complex numbers, subtract the real parts and subtract the imaginary parts. This is consistent with the use of the distributive property.

    Example \(\PageIndex{3}\)

    Subtract:

    \((3−4i)−(2+5i)\)

    Solution:

    Distribute the negative one and then combine like terms

    Answer:

    \(1-9i\)

    The distributive property also applies when multiplying complex numbers. Make use of the fact that \(i^{2}=−1\) to resolve the result into standard form: \(a+bi\).

    Example \(\PageIndex{4}\)

    Multiply:

    \(5i(3−4i)\)

    Solution:

    Begin by applying the distributive property.

    Answer:

    \(20+15i\)

    Example \(\PageIndex{5}\)

    Multiply:

    \((3−4i)(4+5i)\)

    Solution

    Answer:

    \(32-i\)

    Given a complex number \(a+bi\), its complex conjugate is \(a−bi\). We next explore the product of complex conjugates.

    Example \(\PageIndex{6}\)

    Multiply:

    \((3−4i)(3+4i)\)

    Solution:

    Answer:

    \(25\)

    In general, the product of complex conjugates follows:

    \(\begin{aligned}(a+b i)(a-b i) &=a^{2}-a \cdot b i+b i \cdot a-b^{2} i^{2} \\ &=a^{2}-a b i+a b i-b^{2}(-1) \\ &=a^{2}+b^{2} \end{aligned}\)

    Note that the result does not involve the imaginary unit; hence the result is real. This leads us to the very useful property:

    \[(a+b i)(a-b i)=a^{2}+b^{2}\]

    To divide complex numbers, we apply the technique used to rationalize the denominator. Multiply the numerator and denominator (dividend and divisor) by the conjugate of the denominator. The result can then be resolved into standard form, \(a+bi\).

    Example \(\PageIndex{7}\)

    Divide:

    \(\frac{1}{1-2i}\)

    Solution:

    In this example, the conjugate of the denominator is \(1+2i\). Multiply by 1 in the form \(\frac{(1+2i)}{(1+2i)}\).

    To express this complex number in standard form, write each term over the common denominator 5.

    \(\begin{aligned} \frac{1+2 i}{5} &=\frac{1}{5}+\frac{2 i}{5} \\ &=\frac{1}{5}+\frac{2}{5} i \end{aligned}\)

    Answer:

    \(\frac{1}{5}+\frac{2}{5} i\)

    Example \(\PageIndex{8}\)

    Divide:

    \(\frac{3−4i}{3+2i}\).

    Solution:

    Answer:

    \(\frac{1}{13}-\frac{18}{13} i\)

    Exercise \(\PageIndex{1}\)

    Divide:

    \(\frac{5+5i}{1-3i}\)

    Answer

    \(-1+2i\)

    Quadratic Equations with Complex Solutions

    Now that complex numbers are defined, we can complete our study of solutions to quadratic equations. Often solutions to quadratic equations are not real.

    Example \(\PageIndex{9}\)

    Solve using the quadratic formula:

    \(x^{2}−2x+5=0\)

    Solution:

    Begin by identifying a, b, and c. Here

    Substitute these values into the quadratic formula and then simplify.

    Check these solutions by substituting them into the original equation.

    \(\begin{array}{r|r}{Check \:x=1-2i}&{Check\:x=1+2i}\\ {x^{2}-2x+5=0}&{x^{2}-2x+5=0}\\{(\color{OliveGreen}{1-2i}\color{black}{)}^{2}-2(\color{OliveGreen}{1-2i}\color{black}{)}+5=0}&{(\color{OliveGreen}{1+2i}\color{black}{)}^{2}-2(\color{OliveGreen}{1+2i}\color{black}{)}+5=0}\\{1-4i+4i^{2}-2+4i+5=0}&{1+4i+4i^{2}-2-4i+5=0}\\{4i^{2}+4=0}&{4i^{2}+4=0} \\{4-1+4=0}&{4-1+4=0}\\{-4+4=0\:\:\color{Cerulean}{\checkmark}}&{-4+4=0\:\:\color{Cerulean}{\checkmark}} \end{array}\)

    Answer:

    The solutions are \(1−2i\) and \(1+2i\).

    The equation may not be given in standard form. The general steps for solving using the quadratic formula are outlined in the following example.

    Example \(\PageIndex{10}\)

    Solve:

    \((2x+1)(x−3)=x−8\)

    Solution:

    Step 1: Write the quadratic equation in standard form.

    Step 2: Identify a, b, and c for use in the quadratic formula. Here

    Step 3: Substitute the appropriate values into the quadratic formula and then simplify.

    Answer:

    The solution is \(\frac{3}{2} \pm \frac{1}{2} i\). The check is optional.

    Example \(\PageIndex{11}\)

    Solve:

    \(x(x+2)=−19\)

    Solution:

    Begin by rewriting the equation in standard form.

    Here a=1, b=2, and c=19. Substitute these values into the quadratic formula.

    Answer:

    The solutions are \(-1 - 3 i \sqrt{2}\) and \(-1 + 3 i \sqrt{2}\).

    Note

    Consider the following:

    Both numbers are equivalent and \(-1+ 3\sqrt{2}i\) is in standard form, where the real part is −1 and the imaginary part is \(3\sqrt{2}\). However, this number is often expressed as \(-1 + 3 i \sqrt{2} \), even though this expression is not in standard form. Again, this is done to avoid the possibility of misinterpreting the imaginary unit as part of the radicand.

    Exercise \(\PageIndex{2}\)

    Solve:

    \((2x+3)(x+5)=5x+4\)

    Answer

    \(-4\pm6i\sqrt{2} = -2\pmi \sqrt{\frac{3}{2}}\)

    Key Takeaways

    • The result of adding, subtracting, multiplying, and dividing complex numbers is a complex number.
    • Use complex numbers to describe solutions to quadratic equations that are not real.

    Exercise \(\PageIndex{3}\) introduction to complex numbers

    Rewrite in terms of i.

    1. \(\sqrt{-64}\)
    2. \(\sqrt{-81}\)
    3. \(\sqrt{-20}\)
    4. \(\sqrt{-18}\)
    5. \(\sqrt{-50}\)
    6. \(\sqrt{-48}\)
    7. \(\sqrt{-45}\)
    8. \(\sqrt{-8}\)
    9. \(\sqrt{-14}\)
    10. \(\sqrt{-29}\)
    Answer

    1. \(8i\)

    3. \(2i\sqrt{5}\)

    5. \(5i\sqrt{2}\)

    7. \(-3i\sqrt{5}\)

    9. \(i\sqrt{14}\)

    Exercise \(\PageIndex{4}\) introduction to complex numbers

    Perform the operations.

    1. \((3+5i)+(7−4i)\)
    2. \((6−7i)+(−5−2i)\)
    3. \((−8−3i)+(5+2i)\)
    4. \((−10+15i)+(15−20i)\)
    5. \((12+34i)+(16−18i)\)
    6. \((25 −16 i ) + (110 −32 i )\)
    7. \(( 5 + 2 i)−( 8 − 3 i )\)
    8. \(( 7 − i)−(− 6 − 9 i )\)
    9. \((− 9 − 5 i)−( 8 +12 i )\)
    10. \((−11 + 2 i)−(13 − 7 i )\)
    11. \((114 +32 i ) − (47 −34 i )\)
    12. \((38 −13 i ) − (12 −12 i )\)
    13. \(2 i ( 7 − 4 i )\)
    14. \(6 i ( 1 − 2 i )\)
    15. \(− 2 i ( 3 − 4 i )\)
    16. \(− 5 i ( 2 − i )\)
    17. \(( 2 + i)( 2 − 3 i )\)
    18. \(( 3 − 5 i)( 1 − 2 i )\)
    19. \(( 1 − i)( 8 − 9 i )\)
    20. \(( 1 + 5 i)( 5 + 2 i )\)
    21. \(( 4 + 3 i )^{2}\)
    22. \(( 2 − 5 i )^{2}\)
    23. \(( 4 − 2 i)( 4 + 2 i )\)
    24. \(( 6 + 5 i)( 6 − 5 i )\)
    25. \((12 +23 i)(13 −12 i )\)
    26. \((23 −13 i)(12 −32 i )\)
    27. \(15 + 4 i\)
    28. \(13 − 4 i\)
    29. \(\frac{20 i}{ 1 − 3 i}\)
    30. \(\frac{10 i}{ 1 − 2 i}\)
    31. \(\frac{10 − 5 i}{ 3 − i}\)
    32. \(\frac{4 − 2 i}{ 2 − 2 i}\)
    33. \(\frac{5 +10 i}{ 3 + 4 i}\)
    34. \(\frac{2 − 4 i}{ 5 + 3 i}\)
    35. \(\frac{1+2i}{2−3i}\)
    36. \(\frac{3−i}{4−5i}\)
    Answer

    1. \(10+i\)

    3. \(−3−i\)

    5. \(28+16i\)

    7. \(−3+5i\)

    9. \(−17−17i\)

    11. \(67+66i\)

    13. \(8+14i\)

    15. \(−8−6i\)

    17. \(7−4i\)

    19. \(−1−17i\)

    21. \(7+24i\)

    23. \(20\)

    25. \(-140-892i\)

    27. \(15+4i\)

    29. \(−6+2i\)

    31. \(\frac{7-i}{2}\)

    33. \(\frac{11+2i}{5}\)

    35. \(\frac{−4+7i}{13}\)

    Exercise \(\PageIndex{5}\) complex roots

    Solve by extracting the roots and then solve by using the quadratic formula. Check answers.

    1. \(x^{2}+9=0\)
    2. \(x^{2}+1=0\)
    3. \(4t^{2}+25=0\)
    4. \(9t^{2}+4=0\)
    5. \(4y^{2}+3=0\)
    6. \(9y^{2}+5=0\)
    7. \(3x^{2}+2=0\)
    8. \(5x^{2}+3=0\)
    9. \((x+1)^{2}+4=0\)
    10. \((x+3)^{2}+9=0\)
    Answer

    1. \(±3i\)

    3. \(±\frac{5}{2}i\)

    5. \(±i\frac{\sqrt{3}}{2}\)

    7. \(±i\sqrt{\frac{2}{3}}

    9. \(−1±2i\)

    Exercise \(\PageIndex{6}\) complex roots

    Solve using the quadratic formula.

    1. \(x^{2}−2x+10=0\)
    2. \(x^{2}−4x+13=0\)
    3. \(x^{2}+4x+6=0\)
    4. \(x^{2}+2x+9=0\)
    5. \(y^{2}−6y+17=0\)
    6. \(y^{2}−2y+19=0\)
    7. \(t^{2}−5t+10=0\)
    8. \(t^{2}+3t+4=0\)
    9. \(−x^{2}+10x−29=0\)
    10. \(−x^{2}+6x−10=0\)
    11. \(−y^{2}−y−2=0\)
    12. \(−y^{2}+3y−5=0\)
    13. \(−2x^{2}+10x−17=0\)
    14. \(−8x^{2}+20x−13=0\)
    15. \(3y^{2}−2y+4=0\)
    16. \(5y^{2}−4y+3=0\)
    17. \(2x^{2}+3x+2=0\)
    18. \(4x^{2}+2x+1=0\)
    19. \(2x^{2}−12x+14=0\)
    20. \(3x^{2}−23x+13=0\)
    21. \(2x(x−1)=−1\)
    22. \(x(2x+5)=3x−5\)
    23. \(3t(t−2)+4=0\)
    24. \(5t(t−1)=t−4\)
    25. \((2x+3)^{2}=16x+4\)
    26. \((2y+5)^{2}−12(y+1)=0\)
    27. \(−3(y+3)(y−5)=5y+46\)
    28. \(−2(y−4)(y+1)=3y+10\)
    29. \(9x(x−1)+3(x+2)=1\)
    30. \(5x(x+2)−6(2x−1)=5\)
    31. \(3(t−1)−2t(t−2)=6t\)
    32. \(3(t−3)−t(t−5)=7t\)
    33. \((2x+3)(2x−3)−5(x^{2}+1)=−9\)
    34. \(5(x+1)(x−1)−3x^{2}=−8\)
    Answer

    1. \(1±3i\)

    3. \(−2±i\sqrt{2}\)

    5. \(3±2\sqrt{2}i\)

    7. \(\frac{5}{2}±i\frac{\sqrt{15}}{2}\)

    9. \(5±2i\)

    11. \(\frac{−1}{2}±i\frac{\sqrt{7}}{2}\)

    13. \(\frac{5}{2}±i\frac{3}{2}\)

    15. \(\frac{1}{3}±i\frac{\sqrt{11}}{3}\)

    17. \(\frac{−3}{4}±i\frac{\sqrt{7}}{4}\)

    19. \(3\pm\sqrt{2}\)

    21. \(\frac{1}{2}±i\frac{1}{2}\)

    23. \(1±i\frac{\sqrt{3}}{3}\)

    25. \(\frac{1}{2}±i\)

    27. \(\frac{1}{6}±i\frac{\sqrt{11}}{6}\)

    29. \(\frac{1}{3}±i\frac{2}{3}\)

    31. \(\frac{1}{4}±i\frac{\sqrt{23}}{4}\)

    33. \(±i\sqrt{\frac{3}{2}}\)

    Exercise \(\PageIndex{7}\) discussion board

    1. Explore the powers of i. Share your discoveries on the discussion board.
    2. Research and discuss the rich history of imaginary numbers.
    3. Research and discuss real-world applications involving complex numbers.
    Answer

    1. Answers may vary

    3. Answers may vary

    9.6: Introduction to Complex Numbers and Complex Solutions (2024)

    References

    Top Articles
    Jesse Watters Net Worthy, Salary, & More
    Jesse Watters Net Worth
    Kmart near me - Perth, WA
    Top 11 Best Bloxburg House Ideas in Roblox - NeuralGamer
    Canya 7 Drawer Dresser
    Top Scorers Transfermarkt
    Western Union Mexico Rate
    Eric Rohan Justin Obituary
    Gunshots, panic and then fury - BBC correspondent's account of Trump shooting
    Wfin Local News
    Valentina Gonzalez Leaked Videos And Images - EroThots
    Tcu Jaggaer
    Bjork & Zhulkie Funeral Home Obituaries
    Samsung Galaxy S24 Ultra Negru dual-sim, 256 GB, 12 GB RAM - Telefon mobil la pret avantajos - Abonament - In rate | Digi Romania S.A.
    Hellraiser III [1996] [R] - 5.8.6 | Parents' Guide & Review | Kids-In-Mind.com
    Comics Valley In Hindi
    Axe Throwing Milford Nh
    Morristown Daily Record Obituary
    ABCproxy | World-Leading Provider of Residential IP Proxies
    Shopmonsterus Reviews
    Tips on How to Make Dutch Friends & Cultural Norms
    Jenna Ortega’s Height, Age, Net Worth & Biography
    Intel K vs KF vs F CPUs: What's the Difference?
    Possum Exam Fallout 76
    A Grade Ahead Reviews the Book vs. The Movie: Cloudy with a Chance of Meatballs - A Grade Ahead Blog
    Watchdocumentaries Gun Mayhem 2
    Where Do They Sell Menudo Near Me
    Devin Mansen Obituary
    Foolproof Module 6 Test Answers
    Tmka-19829
    Andhra Jyothi Telugu News Paper
    Mistress Elizabeth Nyc
    Magicseaweed Capitola
    Toonily The Carry
    Are you ready for some football? Zag Alum Justin Lange Forges Career in NFL
    Baywatch 2017 123Movies
    3400 Grams In Pounds
    Priscilla 2023 Showtimes Near Consolidated Theatres Ward With Titan Luxe
    Atlanta Musicians Craigslist
    Jasgotgass2
    Dinar Detectives Cracking the Code of the Iraqi Dinar Market
    Craigslist/Nashville
    Professors Helpers Abbreviation
    Frequently Asked Questions
    Movie Hax
    Craigslist Marshfield Mo
    Sleep Outfitters Springhurst
    Dmv Kiosk Bakersfield
    Epower Raley's
    Craigslist Charlestown Indiana
    Vt Craiglist
    Kindlerso
    Latest Posts
    Article information

    Author: Terrell Hackett

    Last Updated:

    Views: 5660

    Rating: 4.1 / 5 (72 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Terrell Hackett

    Birthday: 1992-03-17

    Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

    Phone: +21811810803470

    Job: Chief Representative

    Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

    Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.